1,755 research outputs found

    Using generalized PowerFlux methods to estimate the parameters of periodic gravitational waves

    Full text link
    We investigate methods to estimate the parameters of the gravitational-wave signal from a spinning neutron star using Fourier transformed segments of the strain response from an interferometric detector. Estimating the parameters from the power, we find generalizations of the PowerFlux method. Using simulated elliptically polarized signals injected into Gaussian noise, we apply the generalized methods to estimate the squared amplitudes of the plus and cross polarizations (and, in the most general case, the polarization angle), and test the relative detection efficiencies of the various methods.Comment: 8 pages, presented at Amalid7, Sydney, Australia (July 2007), fixed minor typos and clarified discussion to match published CQG version; updated reference

    The r-modes in accreting neutron stars with magneto-viscous boundary layers

    Full text link
    We explore the dynamics of the r-modes in accreting neutron stars in two ways. First, we explore how dissipation in the magneto-viscous boundary layer (MVBL) at the crust-core interface governs the damping of r-mode perturbations in the fluid interior. Two models are considered: one assuming an ordinary-fluid interior, the other taking the core to consist of superfluid neutrons, type II superconducting protons, and normal electrons. We show, within our approximations, that no solution to the magnetohydrodynamic equations exists in the superfluid model when both the neutron and proton vortices are pinned. However, if just one species of vortex is pinned, we can find solutions. When the neutron vortices are pinned and the proton vortices are unpinned there is much more dissipation than in the ordinary-fluid model, unless the pinning is weak. When the proton vortices are pinned and the neutron vortices are unpinned the dissipation is comparable or slightly less than that for the ordinary-fluid model, even when the pinning is strong. We also find in the superfluid model that relatively weak radial magnetic fields ~ 10^9 G (10^8 K / T)^2 greatly affect the MVBL, though the effects of mutual friction tend to counteract the magnetic effects. Second, we evolve our two models in time, accounting for accretion, and explore how the magnetic field strength, the r-mode saturation amplitude, and the accretion rate affect the cyclic evolution of these stars. If the r-modes control the spin cycles of accreting neutron stars we find that magnetic fields can affect the clustering of the spin frequencies of low mass x-ray binaries (LMXBs) and the fraction of these that are currently emitting gravitational waves.Comment: 19 pages, 8 eps figures, RevTeX; corrected minor typos and added a referenc

    R-Modes in Superfluid Neutron Stars

    Get PDF
    The analogs of r-modes in superfluid neutron stars are studied here. These modes, which are governed primarily by the Coriolis force, are identical to their ordinary-fluid counterparts at the lowest order in the small angular-velocity expansion used here. The equations that determine the next order terms are derived and solved numerically for fairly realistic superfluid neutron-star models. The damping of these modes by superfluid ``mutual friction'' (which vanishes at the lowest order in this expansion) is found to have a characteristic time-scale of about 10^4 s for the m=2 r-mode in a ``typical'' superfluid neutron-star model. This time-scale is far too long to allow mutual friction to suppress the recently discovered gravitational radiation driven instability in the r-modes. However, the strength of the mutual friction damping depends very sensitively on the details of the neutron-star core superfluid. A small fraction of the presently acceptable range of superfluid models have characteristic mutual friction damping times that are short enough (i.e. shorter than about 5 s) to suppress the gravitational radiation driven instability completely.Comment: 15 pages, 8 figure

    Covariant Vortex In Superconducting-Superfluid-Normal Fluid Mixtures with Stiff Equation of State

    Get PDF
    The integrals of motion for a cylindrically symmetric stationary vortex are obtained in a covariant description of a mixture of interacting superconductors, superfluids and normal fluids. The relevant integrated stress-energy coefficients for the vortex with respect to a vortex-free reference state are calculated in the approximation of a ``stiff'', i.e. least compressible, relativistic equation of state for the fluid mixture. As an illustration of the foregoing general results, we discuss their application to some of the well known examples of ``real'' superfluid and superconducting systems that are contained as special cases. These include Landau's two-fluid model, uncharged binary superfluid mixtures, rotating conventional superconductors and the superfluid neutron-proton-electron plasma in the outer core of neutron stars.Comment: 14 pages, uses RevTeX and amssymb, submitte

    Edoxaban: an update on the new oral direct factor Xa inhibitor.

    Get PDF
    Edoxaban is a once-daily oral anticoagulant that rapidly and selectively inhibits factor Xa in a concentration-dependent manner. This review describes the extensive clinical development program of edoxaban, including phase III studies in patients with non-valvular atrial fibrillation (NVAF) and symptomatic venous thromboembolism (VTE). The ENGAGE AF-TIMI 48 study (N = 21,105; mean CHADS2 score 2.8) compared edoxaban 60 mg once daily (high-dose regimen) and edoxaban 30 mg once daily (low-dose regimen) with dose-adjusted warfarin [international normalized ratio (INR) 2.0-3.0] and found that both regimens were non-inferior to warfarin in the prevention of stroke and systemic embolism in patients with NVAF. Both edoxaban regimens also provided significant reductions in the risk of hemorrhagic stroke, cardiovascular mortality, major bleeding and intracranial bleeding. The Hokusai-VTE study (N = 8,292) in patients with symptomatic VTE had a flexible treatment duration of 3-12 months and found that following initial heparin, edoxaban 60 mg once daily was non-inferior to dose-adjusted warfarin (INR 2.0-3.0) for the prevention of recurrent VTE, and also had a significantly lower risk of bleeding events. Both studies randomized patients at moderate-to-high risk of thromboembolic events and were further designed to simulate routine clinical practice as much as possible, with edoxaban dose reduction (halving dose) at randomisation or during the study if required, a frequently monitored and well-controlled warfarin group, a well-monitored transition period at study end and a flexible treatment duration in Hokusai-VTE. Given the phase III results obtained, once-daily edoxaban may soon be a key addition to the range of antithrombotic treatment options

    Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations

    Get PDF
    Calibration of the second-generation LIGO interferometric gravitational-wave detectors employs a method that uses injected periodic modulations to track and compensate for slow temporal variations in the differential length response of the instruments. These detectors utilize feedback control loops to maintain resonance conditions by suppressing differential arm length variations. We describe how the sensing and actuation functions of these servo loops are parameterized and how the slow variations in these parameters are quantified using the injected modulations. We report the results of applying this method to the LIGO detectors and show that it significantly reduces systematic errors in their calibrated outputs.Comment: 13 pages, 8 figures. This is an author-created, un-copyedited version of an article published in Classical and Quantum Gravity. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Bogomol'nyi Limit For Magnetic Vortices In Rotating Superconductor

    Full text link
    This work is the sequel of a previous investigation of stationary and cylindrically symmetric vortex configurations for simple models representing an incompressible non-relativistic superconductor in a rigidly rotating background. In the present paper, we carry out our analysis with a generalized Ginzburg-Landau description of the superconductor, which provides a prescription for the radial profile of the normal density within the vortex. Within this framework, it is shown that the Bogomol'nyi limit condition marking the boundary between type I and type II behavior is unaffected by the rotation of the background.Comment: 7 pages, uses RevTeX, submitted to Phys.Rev.

    Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield

    Get PDF
    An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV

    r-modes in Relativistic Superfluid Stars

    Full text link
    We discuss the modal properties of the rr-modes of relativistic superfluid neutron stars, taking account of the entrainment effects between superfluids. In this paper, the neutron stars are assumed to be filled with neutron and proton superfluids and the strength of the entrainment effects between the superfluids are represented by a single parameter η\eta. We find that the basic properties of the rr-modes in a relativistic superfluid star are very similar to those found for a Newtonian superfluid star. The rr-modes of a relativistic superfluid star are split into two families, ordinary fluid-like rr-modes (ror^o-mode) and superfluid-like rr-modes (rsr^s-mode). The two superfluids counter-move for the rsr^s-modes, while they co-move for the ror^o-modes. For the ror^o-modes, the quantity κ≡σ/Ω+m\kappa\equiv\sigma/\Omega+m is almost independent of the entrainment parameter η\eta, where mm and σ\sigma are the azimuthal wave number and the oscillation frequency observed by an inertial observer at spatial infinity, respectively. For the rsr^s-modes, on the other hand, κ\kappa almost linearly increases with increasing η\eta. It is also found that the radiation driven instability due to the rsr^s-modes is much weaker than that of the ror^o-modes because the matter current associated with the axial parity perturbations almost completely vanishes.Comment: 14 pages, 4 figures. To appear in Physical Review
    • …
    corecore